
ELSEVIER

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Moving up north: How do translocated seedlings perform in mixed-species plantings at the boreal-temperate interface?

Patricia Raymond ^{a,*} ^o, Emilie Champagne ^a, Daniel Dumais ^a ^o, Christel C. Kern ^b, Catherine Périé ^a ^o, Alison D. Munson ^c ^o, Jean-Pierre Tremblay ^d ^o, Alejandro A. Royo ^e

- a Direction de la recherche forestière, Ministère des Ressources naturelles et des Forêts, 2700 rue Einstein, Québec, QC G1P 3W8, Canada
- ^b USDA Forest Service Northern Research Station, 5985 Highway K, Rhinelander, WI 54501, USA
- ^c Département des sciences du bois et de la forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V 0A6, Canada
- ^d Département de biologie, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- ^e USDA Forest Service, Northern Research Station, Forestry Sciences Lab, P.O. Box 267, Irvine, PA 16329, USA

ARTICLE INFO

Dataset link: Seedlings survival and growth data from an assisted migration trial in temperate mixedwood forest, Québec, Canada

Keywords:
DREAM network
Forest assisted migration
Adaptive silviculture
Mixedwood plantation
Climate analogues
Silvicultural rehabilitation

ABSTRACT

Climate change is forcing us to find innovative solutions to help managed forests cope with rapidly shifting environmental conditions. One of these tools is assisted forest migration, the deliberate movement of individuals or genetic material from native sources (i.e. provenance) to locations within or beyond their current ranges. This study aims to assess the climate analogue concept as seed sourcing method in an assisted migration field trial. We evaluated the five-year survival and growth of nine species in mixedwood plantings established in 2018 in Quebec, Canada. The factorial experimental design comprised cutting treatments (1.2 ha patch clearcut vs. 40 % uniform shelterwood), cervid exclusion (excluded vs. non-excluded) and competing vegetation (brushcut vs. control) treatments. Seedlings were grown from seeds of locations associated to three climate analogues: current climate, projected climate for mid-century (2041-2070) and end-of-century (2071-2100). Five-year survival averaged 84 %, ranging from 69 % for Carya ovata to 90 % for Quercus rubra. End-of-century analogue performed less well than others for relocations > 500 km. All species grew larger in patch clearcut than in shelterwood, especially Pinus, Picea and Thuja spp. (3-4 \times diameters, 2-3 \times heights). To a lesser extent, brushing slightly improved diameter growth of Carva ovata, Ouercus rubra and Thuia occidentalis, but only in patch clearcuts for Prunus serotina, Pinus and Picea spp. Impact of cervid was minimal likely due to snowpack protection. We observed limited effects of climatic mismatch on translocated seedlings, which supports the climate analogue approach as seed sourcing method. Longer-term monitoring will be required to confirm trends.

1. Introduction

Forests have long been adapted to the local climates in which they have evolved, but climate change now threatens their health, productivity, and the essential ecological and social benefits they provide globally (Stanke et al., 2021; Hartmann et al., 2022; Altman et al., 2024). As temperatures rise, shifts in the geographic ranges of woody species are already occurring, driven by both expansion through colonization at the colder margins (Boisvert-Marsh et al., 2019; Chakraborty et al., 2021) and retraction through local extinctions at the warmer margins (Berner and Goetz, 2022; Gougherty et al., 2024). Ecotones, such as the temperate-boreal zone in North America, could experience range contractions, as boreal conifer species are expected to adapt

poorly to future climatic conditions (Reich et al., 2015). Temperate hardwood species could also have difficulties migrating naturally further north due to dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions (Lafleur et al., 2010; Frelich et al., 2012; Walker et al., 2024). Given these constraints to species dispersal and establishment, forest assisted migration (hereafter "assisted migration"), the deliberate movement of individuals or genetic material from native seed sources (i.e., provenance) to locations within or beyond their current ranges, is proposed as a tool to maintain tree populations, forest ecosystem functions and to facilitate ecological transition (Dumroese et al., 2015; O'Neil and Gómez-Pineda 2021; Chakraborty et al., 2024).

Assisted migration is one of the adaptive strategies recommended in

E-mail address: patricia.raymond@mrnf.gouv.qc.ca (P. Raymond).

 $^{^{\}ast}$ Corresponding author.

a portfolio of approaches to face of climate change uncertainty in forest management (i.e., "Resistance", "Resilience", "Transition", sensu Millar et al., 2007; Nagel et al., 2017). This tool is however relatively new and still has many knowledge gaps (Park and Talbot, 2018), technical difficulties (Palik et al., 2022; Clark et al., 2023) and risks (Vitt et al., 2010; Aubin et al., 2011; Pedlar et al., 2012; Champagne et al., 2021a; Findlater et al., 2022) that limits its large-scale operational implementation. A major challenge is to identify seed sources that confer long-term growth and survival advantages under climate change, while minimizing losses due to near-term weather events (Park and Talbot, 2018). These risks increase with tree species or genotype translocation distance, also represented by the gradient of assisted migration intensity (sensu Dumroese et al., 2015), i.e. whether they are within their current range (assisted population migration), just outside their range (assisted range expansion) or far from their range (assisted species migration).

To limit maladaptation risks, tools like hardiness zones and provenance trials have been used to provide guidance on safe translocation distances, e.g., a maximum of two seed zones (Pike et al., 2020; Pedlar et al., 2021). Climate-distance index such as climate analogues, i.e. contemporary locations with climates similar to the anticipated future climate of a planting site, are also being tested as a decision-making tool (Grenier et al., 2013; Adams et al., 2024). Climate analogues are especially pertinent for species for which we have little genetic information, for example without defined seed zones (McKenney et al., 1999). This concept, however, still needs to be tested with robust field trials (Royo et al., 2023; Adams et al., 2024).

During the establishment phase, seedlings can be affected by abiotic and biotic stressors (e.g. microclimate, interspecific competition, cervid browsing), which can hinder their survival and development (Champagne et al., 2021a; Clark et al., 2022); these stressors may be more important for translocated seedlings. Manipulating microenvironmental conditions with silvicultural treatments, for example by maintaining a partial canopy cover that limits temperature extremes, may help attenuate those stresses (Royo et al., 2023; Dumais et al., 2025). Yet, our ability to develop assisted migration strategies is constrained by our limited knowledge on survival, growth and acclimatization capacity of southern tree species and provenances in response to biotic and abiotic stressors at higher latitudes (Park and Talbot, 2018). Furthermore, species diversity and structural diversity should also be considered in planning for assisted migration, given their role in fostering resistance and resilience to stresses (Alfaro et al., 2014; Felton et al., 2016; Messier et al., 2019; Guignabert et al., 2024). For example, using species mixtures with complementary traits is recommended to promote forest adaptive capacity and carbon storage (Messier et al., 2019; Aquilué et al. 2021; Urgoiti et al., 2022; Warner et al., 2023), however, validation under field conditions remains limited.

Translocating resource-demanding species such as temperate hardwood species into northern forests requires selecting fertile sites, but the latter can also constitute resilient and high-quality late-successional forest habitats. Selecting poorly regenerated high-graded stands (e.g., by diameter-limit cutting) growing on fertile sites for assisted migration plantings could contribute to enhance stand composition, quality, productivity (Kenefic et al., 2014; Raymond et al., 2020, 2024), diversity and resilience (Aquilué et al. 2021; Messier et al., 2021), with potentially climate-adapted species and genotypes (Royo et al., 2023). This study is set within the context of forest rehabilitation, where we aimed to evaluate the climate analogue approach as a tool for guiding seed sourcing for assisted migration in a field experiment. We also manipulated forest cover, cervid access and understory vegetation to test the effects of abiotic and biotic constraints on seedling survival and growth. We hypothesized that climatic mismatch increases with translocation distance, thus resulting in declines in survival and growth along the climate analogue gradient. We predict that southern species (i.e. non-local deciduous species) and southern provenances (i.e. mid-century and end-of-century climate analogues) are affected disproportionately relative to local species and provenances. We also

predict that by reducing microclimate variation, partial overstory cover may mitigate reductions in survival experienced by non-local species and southern populations of local species in their new environment. However, their growth response will be higher where resources are more abundant (e.g., in open areas with competing vegetation control).

2. Methods

2.1. Study area

The experiment is located approximately 95 km northwest of Quebec City, near the Lac des Amanites in the Réserve faunique de Portneuf (Québec, Canada; lat. 47.128° N, long. -72.409° W). Two cervid species co-occur at light to moderate density in the area: white-tailed deer (Odocoileus virginianus) estimated at density of 4.0 individuals/km² in 2018 (Lebel and De Bellefeuille, 2021) and moose (Alces alces) at 7.3 individuals/10 km2 in 2009 (Lefort and Massé 2015). We established this study in the balsam fir (Abies balsamea (L.) Mill.) - yellow birch (Betula alleghaniensis Britt.) bioclimatic domain, ecoregion 4c-M, hills of the middle Saint-Maurice (Saucier et al., 2009). A high hill topography with rounded summits (altitude 365 m) characterize the landscape. Humo-ferric podzols have developed on deep glacial tills and are moderately well-drained sandy loams (Soil Classification Working Group, 1998). Mean annual daily temperature and total precipitation (1981-2010) are respectively 4.0°C and 1133 mm, including a mean annual snow fall of 230 cm (Environment Canada, 2019). During the study period, the mean annual daily temperature values measured at the study site averaged 4.3°C (VP-4 Sensor, Part #40,023, 1.3 m above ground, see Dumais et al., 2025 for more information).

Selected stands belong to the yellow birch – balsam fir ecotype and were harvested at least once by diameter limit cutting prior to the 1990's. In 2017, these irregular uneven-aged stands had a mean precut merchantable basal area (BA) of 25.7 m²/ha and were composed of 41 % Betula alleghaniensis, 26 % Abies balsamea, 11 % Acer rubrum (L.), 10 % Acer saccharum (Marsh.), 6 % Picea rubens (Sarg.) and a minor component of Picea glauca ([Moench] Voss), Betula papyrifera (Marsh.), Fraxina nigra (Marsh.) and Populus tremuloides (Michx). Main understory nontree woody species comprised Acer spicatum (Lamb.), Viburnum lantanoides (Michx), Corylus cornuta (Marsh.) Dryopteris carthusiana ([Villars] H. P. Fuchs) and Taxus canadensis (Marsh.).

2.1.1. Experimental design

The Lac-des-Amanites experiment is the first site of the international network DREAM (Desired REgeneration through Assisted Migration), as described in Royo et al. (2023). It follows a split-split-split-plot factorial design, structured within four complete randomized blocks. Blocking was performed prior to the cut to account for the variability caused by the hilly topography, where slopes varied from gentle to moderate (4–30 %). The experiment tests two overstory cutting treatments, 100 % in patch clearcut and 40 % uniform shelterwood, which are applied to 140×86 m main plots (1.2 ha with a >20 m buffer). Each main plot is divided into subplots measuring $56 \times 66 \, \text{m}$ to test the effect of cervid exclusion, with one half designated as an exclosure (2.4 m high woven galvanized fences) and the other as a non-exclosure. Within each subplot, sub-subplots of $28 \times 66 \, \text{m}$ are used to examine understory vegetation control, with one half undergoing brushcutting while the other remains untreated. These sub-subplots are further divided into sub-sub-subplots of $28 \times 22\,m$ to assess the influence of climate analogues, representing current, mid-century, and end-of-century climates.

This factorial design comprises 24 experimental units, representing all combinations of two cutting treatments (Cut: patch clearcut vs. uniform shelterwood), two cervid exclusion treatments (Herbivore: exclosure vs. non-exclosure), two vegetation control treatments (Vegetation: brushcut vs. control), and three climate analogue treatments (Analogue: current, mid-century, and end-of-century). Each experimental unit contains 12 seedlings per species across all species except

Carya ovata, totaling 288 seedlings per species per block. Due to technical constraints, we were unable to collect sufficient seeds to complete the current climate analogue of Carya ovata. As a result, for this species only, the factorial design includes 16 experimental units, totaling 192 seedlings of Carya ovata per block (12 seedlings \times 2 analogues \times 2 vegetation treatments \times 2 herbivore treatments \times 2 cutting treatments).

2.1.2. Species and seed selection

We selected nine species representing a diversity of traits and resistance to abiotic and biotic stresses, while being ecologically and economically important (Table 1). Among them three are non-local deciduous species: Carya ovata ([Miller] K. Koch), Prunus serotina (Erhr.) and Quercus rubra (L.). The other deciduous is local: Acer saccharum. The five coniferous species are local: Picea glauca, Picea rubens, Pinus resinosa (Ait.), Pinus strobus (L.) and Thuja occidentalis (L.).

Based on assisted migration classifications defined by Dumroese et al. (2015), the planting of *Quercus rubra* at Lac-des-Amanites falls under "assisted range expansion", as it involves moving a species just beyond its established range. In contrast, the planting of *Prunus serotina* and *Carya ovata* corresponds to "assisted species migration", which refers to the movement of species to suitable habitats far outside their current range (i.e., not present in the next bioclimatic domain). The planting of the six local species falls under "assisted population migration", which involves the movement of southern provenances within a species' existing range limits to enhance adaptation to changing climatic conditions.

We selected seedlots that could fit with the climate analogue maps modeled for two emission scenarios (4.5 and 8.5 RCP). We calculated two sets of climate analogues (one for 4.5 and one for 8.5 RCP) based on the method developed by Grenier et al. (2013) using data from the 5th IPCC (The Intergovernmental Panel on Climate Change) report and scaled (10 km \times 10 km) for North America. These two scenarios equate to SSP2–4.6 and SSP3–7.0 shared socio-economic pathways of CMIP6, respectively (Wotherspoon et al., 2023). We calculated the climatic distances using the Zech–Aslan Energy (ZAE) statistic (Grenier et al.,

2013), a multivariate measure that integrates multiple climate variables into a single dissimilarity value. We used three variables (mean annual temperature, mean annual precipitation and minimum temperature in May) and two future periods: 2041–2070 (mid-century) and 2071–2100 (end-of-century) (Royo et al., 2023). Cold tolerance correlates with temperature heterogeneity across species ranges, with minimum winter temperatures for conifers and hardwoods in the Northern Hemisphere (Kreyling et al., 2015). We also accounted for spring minimum temperature, a factor especially limiting for hardwood species, because temperature fluctuation during dehardening puts vulnerable flowers and expanding leaves at risk (Jönsson et al., 2004; Kollas et al., 2014; Mura et al., 2022). Annual precipitation was included in the model given its influence on species distribution (Prasad et al., 2024).

For each species, seeds were collected from locations (provenances) within each of the three climate analogue zones: current ($80\pm14\,\mathrm{km}$), mid-century ($195\pm81\,\mathrm{km}$), and end-of-century ($584\pm78\,\mathrm{km}$). Seed collection was conducted independently for each species. To account for genetic diversity within each climate analogue zone, we ensured that seeds were sourced from multiple seed-bearing trees. For non-local species, we used the closest available seedlots at their current northern range as proxy of the local source (current climate). As a result, the selected provenances originate from a latitudinal gradient ranging from $41.0^{\circ}\mathrm{N}$ to $47.8^{\circ}\mathrm{N}$, covering a geographical span from Pennsylvania (USA) to Quebec (Canada) (Table 1, Fig. 1).

2.1.3. Nursery seedling production

All seedlings were grown at the provincial government nursery in Berthierville (QC, Canada). Conifer seeds were stratified, except for *Pinus resinosa* and *Thuja occidentalis* (end-of-century) lots. *Quercus rubra* acorns were pre-soaked before planting to initiate germination. Conifers were sown in micro-cells containers in May 2017 and then transplanted in June 2017 to containers (IPL® [Saint-Damien, QC, Canada] 25–310: 25 cells, 310 cm³ each) for a large-stock seedlings production (2 growing seasons). Hardwood species (except for *Cary ovata*) were sown in the spring of 2018 and container-grown (IPL 28–340: 28 cells, 340 cm³

Table 1 Coordinates of seed sources (provenances) based on climate analogue modelling and distance from the planting site (47.128°N, -72.409°W). For each species, we noted the end-of-century habitat suitability, and the forest assisted migration type (FAM).

Species	Habitat suitability ^a	$\mathbf{FAM}^{\mathrm{b}}$	Climate analogue	Latitude (°N)	Longitude (°W)	Distance (km)
Picea glauca	\	APE	Current	47.800	-72.917	83
White spruce			Mid-cent.	45.750	-71.417	172
			End-cent.	44.850	-66.980	486
Picea rubens	1	APE	Current	47.167	-72.717	31
Red spruce			Mid-cent.	45.433	-71.300	208
			End-cent.	44.660	-69.990	332
Thuja occidentalis	1	APE	Current	47.157	-71.824	36
Northern-white cedar			Mid-cent.	46.504	-70.597	150
			End-cent.	44.806	-65.552	585
Pinus strobus	↑	APE	Current	47.117	-73.250	72
Eastern white pine			Mid-cent.	45.083	-72.083	233
			End-cent.	43.675	-75.307	455
Pinus resinosa	↑	APE	Current	46.867	-72.333	34
Red pine			Mid-cent.	45.267	-72.567	213
			End-cent.	44.233	-65.333	634
Acer saccharum	↑	APE	Current	46.980	-70.550	135
Sugar maple			Mid-cent.	45.518	-71.605	192
			End-cent.	41.000	-79.000	874
Quercus rubra	*	ARE	Current	46.910	-71.210	88
Northern red oak			Mid-cent.	45.499	-72.529	187
			End-cent.	41.600	-79.000	820
Prunus serotina	*	ASM	Current	46.974	-70.417	145
Black cherry			Mid-cent.	45.384	-71.598	206
			End-cent.	41.825	-80.003	855
Carya ovata	*	ASM	Current	46.351	-72.578	94
Shagbark hickory			Mid-cent.	45.414	-72.686	198
-			End-cent.	45.343	-73.181	214

a Périé et al. (2014). Habitat suitability projected for the end of the century (2071–2100): ↓=unfavorable; ↑=favorable; *new habitat.

b Dumroese et al. (2015). APE=assisted population expansion; ARE=assisted range expansion; ASM=assisted species migration.

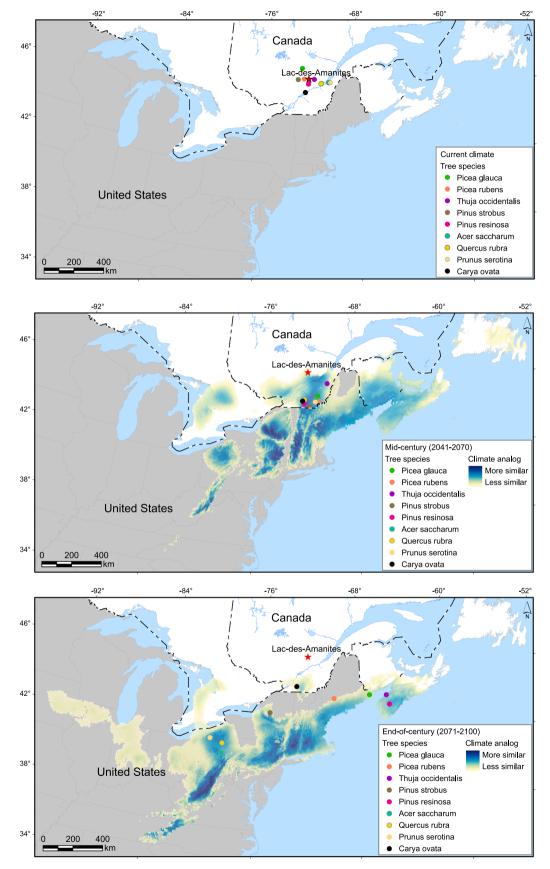


Fig. 1. Distribution of seed sources (provenances) used for seedling production for the three climate analogue treatments: current climate, mid-century (2041–2070) and end-of-century (2071–2100), based on the 8.5 RCP emission scenario.

each) until August 2018 so that they could be planted in the field after one growing season. *Carya ovata* was grown bare root (sown in November 2017) and required 2 complete growing seasons before planting.

2.1.4. Field application of treatments

Prior to harvesting, we marked trees to remove in the shelterwood treatment (40 % of merchantable basal area [MBA, trees dbh >90 mm]) with priority to weak trees, poor form and short-lived species such as balsam fir. We initially aimed a 50 % establishment cut and planned a tree marking of 30 % MBA, given we expected that skidding trails (approx. 6 m wide) would harvest another 20 %. The operators, however, disturbed less than expected and felling operations only harvested 40 % of MBA. The mid-story vegetation was not further removed beyond the establishment cut; approximately 50 % of full sunlight was transmitted at 1,30 m height (Dumais et al., 2025). Three blocks were logged with a feller-buncher (Tiger Cat 822 C) and hauled with a grapple skidder (Tiger Cat 635D) in July 2017. Due to operational constraints and machinery availability, the last block was treated in June 2018 with a multifunctional harvester (Tiger Cat 845B mounted with a Log max 7000 felling head) and a forwarder (Ponsse Elk). In late June 2018, soil was prepared for planting in each patch clearcut by disk trenching using a Timberjack 560D mounted with a TTS scarifier. There was no site preparation in the shelterwood cutovers to avoid root damage on residual trees. In July 2018, we built fences (56 m \times 66 m \times 2.4 m) made of woven galvanized wire to exclude cervids on half of planted areas. In an effort to exclude snowshoe hare (Lepus americanus), we added finer woven wire (2.5 cm openings) on the first 1.20 m lower section to fill the openings caused by the uneven ground surface.

We planted the Lac-des-Amanites experiment with 9216 seedlings of eight species in August-September 2018 and 664 seedlings of *Carya ovata* in May 2020 (one growing season later) because of the different seedling nursery technique required. Each experimental unit received 12 rows (2 m apart) containing one seedling of each of the nine species, which were randomly assigned within the row and spaced by 2 m. We measured the diameter (1 cm above root collar) and height of each seedling at the time of planting. Survival, diameter (mm), and height (cm) were re-assessed in 2023. During the second growing season (July-August 2020), we cut all the competing vegetation between the planted seedlings using mechanical brushsaws (Stihl FS 410 C) in the subsubplots planned for vegetation control. At the time of the 5-yr assessment (2023), competing vegetation had regrown in the brushcut treatment, but were still lower in height and density than the untreated vegetation in the control treatment areas (pers. obs.).

2.2. Statistical analyses

We evaluated the effect of four treatments on three response variables: survival rate (%), mean annual diameter growth (mm/yr), and mean annual height growth (cm/yr). These three variables were

analyzed separately for each species, using the full-factorial combination of treatments (Cut \times Herbivore \times Vegetation \times Analogue) as explanatory variables, resulting in a total of 27 models (9 species × 3 response variables). We used general linear mixed models and checked visually for normality and heteroscedasticity of residuals. To properly model the random effect (multiple levels of split-plots), we used a stepwise approach. We first computed the model with the most nested level of error, i.e. the sampling error (Block \times Cut \times Herbivore ×Vegetation × Analogue) and then verified that this model converged properly and that random effects could be estimated. We then sequentially added additional levels of errors associated with the split-plots until all levels were included or that the model could not converge. For each combination of species and response variable, we used the model with the most complete structure that could converge. All models were computed with the GLIMMIX procedure (SAS 9.4, SAS Institute Inc., Cary, NC, USA), using a binomial distribution for survival, and a gaussian distribution for diameter and height annual growth. Statistical significance of the selected model was assessed with a Type III ANOVA table using Kenward-Roger's methods of estimation for degrees of freedom, with α set at 0.05. For statistically significant explanatory variables with more than two levels, we used least-squares means differences, with Kenward-Roger degrees of freedom, using the LSMeans function. Estimates presented are back transformed (when required) with 95 % confidence intervals.

2.3. Results

2.3.1. Seedling survival after 5 years

Overall, 84 % of seedlings survived after 5 years, with averages ranging from 69 % for *Carya ovata* to 90 % for *Quercus rubra* (Table 2). Survival rates of *Prunus serotina*, *Acer saccharum* and *Carya ovata* differed among climate analogues (Tables S1-S3). *Prunus serotina* of the midcentury analogue survived better (88 %) than those associated with the current climate (78 %) and the end-of-century (75 %). *Acer saccharum* survival was also greater for seedlings of the mid-century analogue (89 %) than those of the end-of-century analogue (80 %), but without differing from those of current climate (85 %). *Carya ovata* survival was higher for the end-of-century analogue (86 %) than for the mid-century analogue (53 %).

Survival in response to other treatments varied among species. *Thuja occidentalis, Pinus resinosa,* and *Carya ovata* all exhibited slightly higher survival in the open area of patch clearcuts than under the partial cover of shelterwood cuts with respective increases of 6 %, 8 % and 15 % in mean survival (Tables S3, S5-S6). Additionally, in absence of brushcutting, *Carya ovata* survived better in the patch clearcut than in the shelterwood (82 % vs 62 %; significant Cut × Vegetation interaction, Table S3 and S10). Within the shelterwood treatment, *Acer saccharum* survived better outside than inside the exclosures (89 vs 80 %; significant Cut × Herbivore interaction, Table S2 and S10). For the other species, survival was not affected by treatments. There was no difference

 Table 2

 Overall five-year survival rate (%) by species extracted from raw data and survival rate estimates by species and climate analogue evaluated by a least-squares means.

Species	Overall survival	Climate analogue			
		Current	Mid-cent.	End-cent.	
Picea glauca	88.8 (1.0)	89.7 (1.7)	89.7 (1.8)	89.2 (1.7)	
Picea rubens	82.8 (1.4)	85.4 (2.7)	83.5 (2.9)	84.2 (2.8)	
Thuja occidentalis	87.0 (1.3)	91.1 (1.8)	89.0 (2.1)	85.3 (2.5)	
Pinus strobus	81.9 (1.2)	82.9 (3.0)	84.4 (2.8)	81.1 (3.1)	
Pinus resinosa	82.7 (1.6)	84.8 (2.6)	87.3 (2.8)	83.0 (2.8)	
Acer saccharum	83.5 (1.5)	84.9 (3.3)ab	89.4 (2.7)a	80.4 (3.8)b	
Quercus rubra	90.0 (1.0)	91.6 (1.8)	91.0 (1.9)	91.3 (2.0)	
Prunus serotina	79.8 (1.4)	78.2 (2.6)a	88.4 (1.9)b	75.1 (2.8)a	
Carya ovata	69.2 (3.2)	N/A	53.3 (4.9)a	86.0 (2.4)b	

Notes: Standard error is presented in parenthesis. Differing letters indicate significant differences among climate analogues (main effect). One Analogue treatment (Current) was removed from the analysis because of the lack of seedlings at planting for *Carya ovata*.

among treatments and their interactions for *Pinus strobus* and *Picea glauca* (Tables S7 and S8). A triple interaction (Cut \times Vegetation \times Analogue, Tables S4 and S9) was detected for *Quercus rubra* and *Picea rubens*, but further statistical tests revealed no significant difference among treatment levels.

2.3.2. Seedling annual growth after 5 years

Seedlings responded positively to the greater resource availability in the open areas of patch clearcuts compared to the partially shaded environment of shelterwood cuts. This was reflected in greater diameter growth for all species (Fig. 2) and greater height growth for *Prunus serotina, Thuja occidentalis, Picea* and *Pinus* species in patch clearcuts (Fig. 3, Tables S1 to S9). Conifers exhibited the strongest response to cutting treatments, with diameter growth 3–4 times higher and height growth 2–3 times greater in patch clearcuts compared to the shelterwood cuts.

To a smaller extent, and mostly in interaction with other treatments, competing vegetation controlled by brushcutting influenced seedling growth, especially in terms of diameter growth. The vegetation control treatment increased diameter for *Carya ovata* (28 %), *Quercus rubra* (35 %) and *Thuja occidentalis* (24 %) (Fig. 2). Diameter growth after vegetation control only increased in patch clearcuts for all other species (except for *Acer saccharum*): *Prunus serotina* (41 %), *Pinus strobus* (28 %), *Pinus resinosa* (33 %), *Picea glauca* (32 %) and *Picea rubens* (35 %) (significant Cut × Vegetation interaction, Fig. 2). The positive effect of vegetation control on diameter growth decreased with translocation distance (from north to south) for *Pinus strobus* (increases: current climate 52 %, mid-century 27 %, end-of-century 10 %) and *Picea glauca* (increases: current climate 50 %, mid-century 26 %, end-of-century 20 %) (significant Vegetation × Analogue interactions, Tables S7, S8 and S11).

The effect size of the climate analogue, when present, was small. Growth variables varied with climate analogue (main effect) for *Quercus rubra* (height), *Acer saccharum* (diameter and height), *Thuja occidentalis* (height) and *Pinus strobus* (diameter and height). Response differed among species, with smaller seedlings for end-of-century analogues in *Acer saccharum*, *Quercus rubra* and *Thuja occidentalis*, and larger end-of-century seedlings for *Pinus strobus* (Figs. 4 and 5).

Cervid exclusion influenced growth variables, but only on a few species and in interaction with other treatments. *Thuja occidentalis* had greater diameter and height growth when both cervid herbivory and understory vegetation were controlled (significant Cut \times Herbivore \times Vegetation \times Analogue (diameter) and Herbivore \times Vegetation (height) interactions, Tables S5 and S12). *Acer saccharum* diameter growth responded positively to the vegetation control treatment when they were located outside the exclosures in patch clearcuts (significant Cut \times Herbivore \times Vegetation interaction, Tables S2 and S13). *Picea glauca* seedlings of the current climate grew higher inside the exclosures than outside (significant Herbivore \times Analogue interaction, Tables S8 and S12). *Picea rubens*' growth response in diameter and height outside the exclosures was greater when the vegetation was controlled (significant Herbivore \times Vegetation interactions, Tables S9 and S12).

3. Discussion

While most recent knowledge on assisted migration is derived from provenance tests implemented under optimal conditions, e.g, open grown and well-tended plantations, few studies have integrated the effects of abiotic and biotic constraints on seedling survival and growth (Park and Talbot, 2018; Champagne et al., 2021a). Our study assessed some of these factors and their interactions in field conditions. Five-year results showed a predominant effect of cutting treatments on growth, thus highlighting the importance of light as a limiting resource for seedlings at high latitude (Lieffers et al., 1999; Messier et al., 1999). To a lesser extent, and mostly in the patch clearcuts, competing vegetation control also improved growth of conifer species and of *Prunus serotina*, as

reported by other studies in temperate forest (e.g., Paquette et al., 2006; Dumais et al., 2020). Impacts of cervid were limited and mainly observed on highly selected *Thuja occidentalis* and *Acer saccharum* (Champagne et al., 2021b), in interaction with other treatments. During the first five-years after planting, most seedlings were covered by snow during the winter (230 cm mean annual snowfall in the area), which protected them from browsing (Potvin, 1995). Twigs of woody plants are a staple element of cervid diet in winter (Dumont et al., 2005).

3.1. Species response to climate analogues treatments (provenances)

Survival and growth response to the climate analogue treatments was variable across species. Results only partially supported the hypothesis of the increasing climatic mismatch with translocation distance. As predicted, species with the longest translocation distance presented differences in growth and survival among climate analogue treatments, non-local species in assisted species migration (Prunus serotina, Carya ovata) and assisted range expansion (Quercus rubra). For instance, we observed that seedlings from location further south had a slightly lower survival (Prunus - end-of-century, Carya ovata - midcentury) or growth (Quercus rubra - end-of-century). Nevertheless, three local species in assisted population migration (Acer saccharum, Pinus strobus, Thuja occidentalis), also showed differences among climate analogues, either smaller survival and growth (Acer saccharum - end-ofcentury), smaller growth, (Thuja occidentalis – end-of-century) or larger growth (Pinus strobus - end-of-century) with more southern provenances. There was no difference among climate analogues for the three other local species (Picea glauca, Picea rubens, Pinus resinosa).

It is possible that other factors influenced species' response, such as the species evolutionary strategy (i.e., specialist vs. generalist) related to the intraspecific genetic variability and phenotypic plasticity (Leites and Benito Garzón, 2023). It could be the case for our study located at high latitude (47°N), where there is evidence for a trade-off between investment in growth and cold tolerance for both conifers and deciduous species (Aitken and Bemmels, 2016; Leites et al., 2019). Species considered as specialists such as Prunus serotina, Pinus strobus and Picea glauca experience high intra-specific variability and can exhibit strong growth clines along temperature gradients (Leites et al., 2019; Leites and Benito Garzón, 2023). Translocations far beyond the range of the local conditions for which they are adapted can thus lead to maladaptation, such as slower growth and higher mortality. In the present study, it was only the case for Prunus serotina, the specialist that was translocated on the greatest distance (855 km). Species considered as generalist like Quercus rubra, Acer saccharum and Thuja occidentalis usually experience little intraspecific genetic variation to climate; their phenotypic plasticity can allow them to cope better with local conditions (Solarik et al., 2018; Leites et al., 2019; Leites and Benito Garzón, 2023; Mura et al., 2025). In our study, however, we observed slightly lower performances with the end-of-century analogues for these species (>500 km translocations).

Yet, the main trend in the observed responses to the climate analogue treatments was a slightly lower survival or growth performance of the southernmost provenance (end-of-century) compared to the local provenances, especially for seed sources translocated further than 500 km. This distance was beyond the recommended limits in current seed transfer guidelines (e.g. <300-400 km, Adams et al., 2024; Pike and Haase, 2024), and could explain the results obtained for Prunus serotina, Quercus rubra, Acer saccharum and Thuja occidentalis (Table 1). Carya ovata and Pinus strobus contrasted in their response to climate analogues, with a higher performance of end-of-century seedlings. This could be explained by the smaller difference in their translocation distance (Table 1), where mid-century and end-of-century models overlapped (Fig. 1). This was also reflected in the climatic distances for these two species (Table S14). Mid-century and end-of-century analogues were rather climatically similar for Pinus strobus (0.60 in climatic distance index). The range of climatic distances among analogues was also

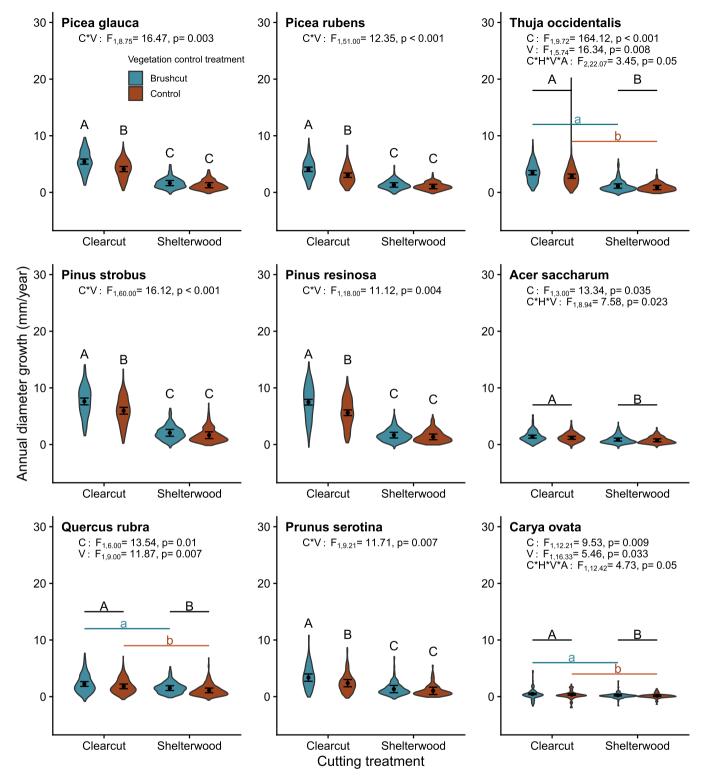


Fig. 2. Effects of cutting and vegetation control treatments on annual diameter growth (all species but $Carya\ ovata$: $Diam_{5th\ year}$ – $Diam_{plantation}$ /5; $Carya\ ovata$: $Diam_{4th\ year}$ – $Diam_{plantation}$ /4;) for the nine species planted in the assisted migration experiment. Violin shapes present the data distribution, while the dots and lines are model estimates and confidence intervals (95 %). When significant, mixed model factor effects are noted on the panel, C=Cut, V=Vegetation, H=Herbivore, and A=Analogue. Letters represent statistically significant differences among treatments, as evaluated by least-squares means for statistically significant interactions or treatments ($\alpha = 0.05$). Capital letters represent effect of the interaction between treatments, or effects of the cutting treatment when the interaction was not significant. Lowercase letters represent effects of vegetation control treatment.

small for *Carya ovata* (0.75–1.39), so the results should be interpreted with caution for these two species.

In the specific case of Carya ovata, the lower survival and slower

growth, as well as the apical shoot damage observed in the field, hints that this species might not be the best candidate for assisted species migration (Table 2 and Figs. 4–5). Hence, climatic conditions could have

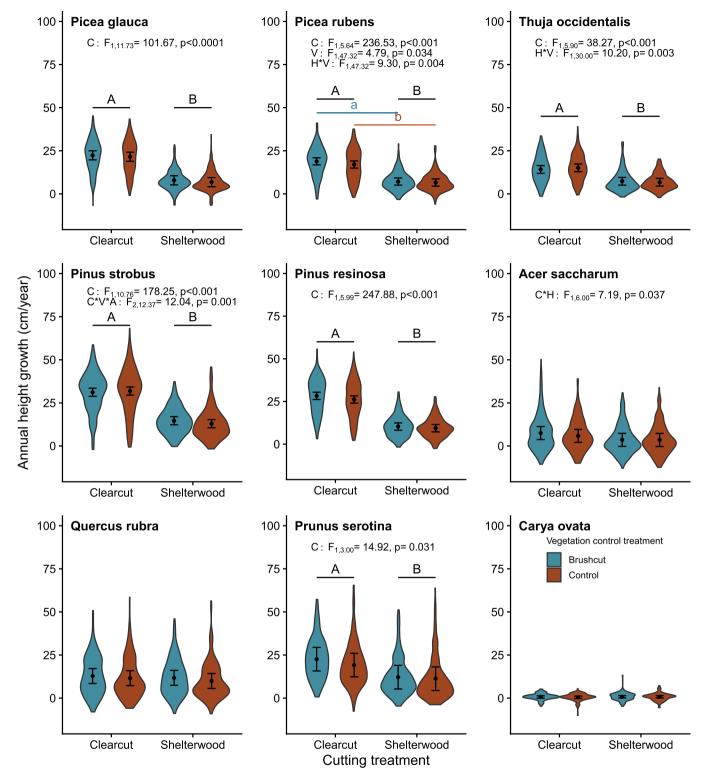


Fig. 3. Effects of cutting and vegetation control treatments on annual height growth (all species but $Carya\ ovata$: Height_{5th year} – Height_{Planting}/5; $Carya\ ovata$: Height_{4th year} – Height_{Planting}/4;) for the nine species planted in the assisted migration experiment. Violin shapes present the data distribution, while the dots and lines are model estimates and confidence intervals (95 %). When significant, mixed model factor effects are noted on the panel, C=Cut, V=Vegetation, H=Herbivore, and A=Analogue. Letters represent statistically significant differences among cutting treatment, as evaluated by least-squares means for statistically significant interactions or treatments ($\alpha = 0.05$).

been too harsh at 47°N, as indicated by important apical shoot damage in the first years (also observed for *Carya cordiformis*, Clark et al., 2022). Our data logger recorded the winter minimum temperature reaching – 40 °C and late frost events during leaf flush during years 2 and 3 (Dumais et al., 2025). In addition, this species prioritizes investing its resources in

the pivotal root system during the first years and little in height growth, which makes it vulnerable to competing vegetation during the establishment phase (Graney, 1990). Repeated damage to seedlings during the first years can be determinant to its early survival. The other non-local species *Prunus serotina* and *Quercus rubra* grew well in their

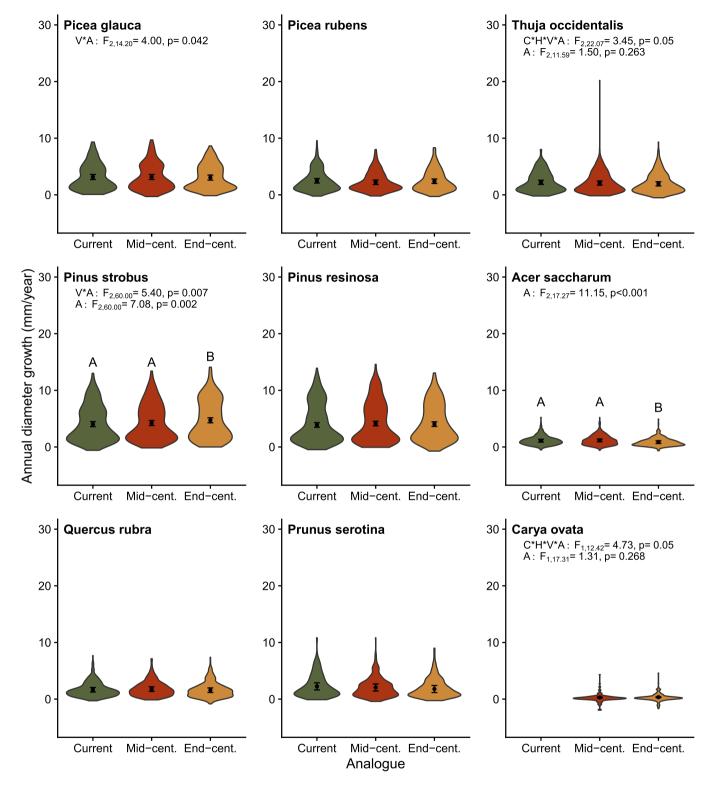


Fig. 4. Effects of climate analogue on annual diameter growth (all species but $Carya\ ovata$: Diam $_{\rm Sth\ year}$ – Diam $_{\rm Planting}$ /5; $Carya\ ovata$: Diam $_{\rm Hahth\ year}$ – Diam $_{\rm Planting}$ /4;) for the nine species planted in the assisted migration experiment. Violin shapes present the data distribution, while the dots and lines are model estimates and confidence intervals (95 %). When significant, mixed model factor effects are noted on the panel, C=Cut, V=Vegetation, H=Herbivore, and A=Analogue. Letters represent statistically significant differences among treatments, as evaluated by least-squares means for statistically significant interactions or treatments (α = 0.05). For $Carya\ ovata$, one analogue treatment was removed from the analysis because of the lack of seedlings at planting.

new environment. These two species behave as pioneer species and can experience rapid growth after early establishment, even at higher latitude (Etterson et al., 2020; Paquette et al., 2006; Clark et al., 2022). The

slightly lower survival and growth observed for end-of-century *Acer* saccharum, *Quercus rubra* and *Prunus serotina* could be counterbalanced by a better drought tolerance compared to seedlings grown from local

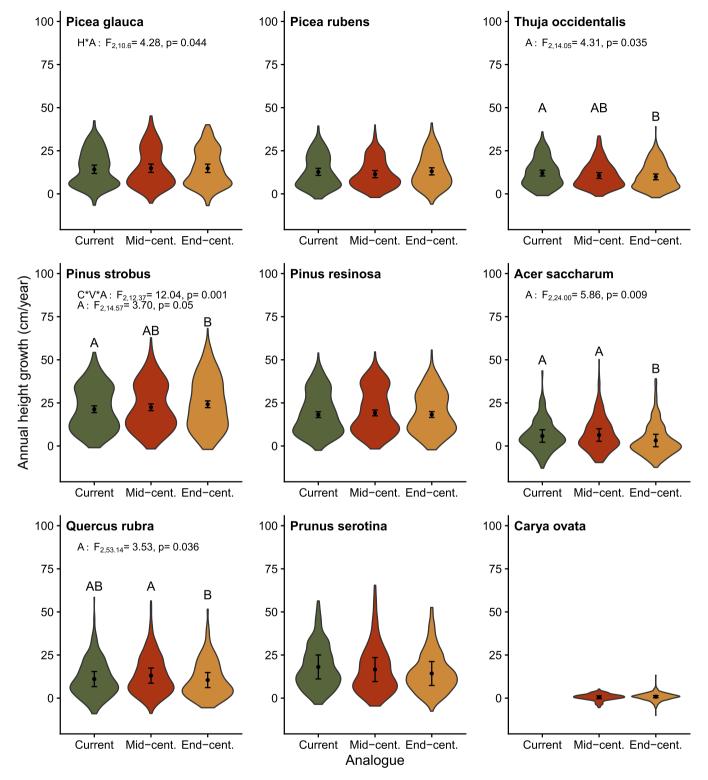


Fig. 5. Effects of climate analogue on annual height growth (all species but $Carya\ ovata$: Height_{5th\ year} – Height_{Planting}/5; $Carya\ ovata$: Height_{4th\ year} – Height_{Planting}/4;) for the nine species planted in the assisted migration experiment. Violin shapes present the data distribution, while the dots and lines are model estimates and confidence intervals (95 %). When significant, mixed model factor effects are noted on the panel, C=Cut, V=Vegetation, H=Herbivore, and A=Analogue. Letters represent statistically significant differences among treatments, as evaluated by least-squares means for statistically significant interactions or treatments ($\alpha = 0.05$). For $Carya\ ovata$, one Analogue treatment was removed from the analysis because of the lack of seedlings at planting.

source, current populations (Dumais et al., 2025). As for *Picea* species and *Pinus resinosa*, they could be good candidates for assisted population migration; their performance was similar across provenances.

Overall, significant differences in survival and growth across climate analogues were limited, implying a certain flexibility for assisting migration of the studied species. Further, our results indicate that local is not necessarily 'local' anymore, because the climate has shifted already since the seed-bearing trees were established in past decades (O'Neill and Gómez-Pineda, 2021). In many cases, the moderately translocated (mid-century) seedlings performed as well or better than

local sources, which could suggest that reforestation efforts might be using relatively high proportions of seed associated to a mid-century analogue. These results also align with the conservative recommendations of moderate seed zone transfers \sim 2 seed zones, \leq 400 km (Adams et al., 2024; Pike and Haase, 2024).

3.1.1. Role of the shelterwood for southern species and provenances

We expected that by reducing microclimate variability, the partial cover in the shelterwood treatment would facilitate seedling survival of southern species and provenances, but our first five-year results did not support this prediction. In fact, survival rates were either not influenced by the overstory cutting treatments or were slightly greater in the patch clearcut (Carya ovata, Thuja occidentalis and Pinus resinosa), where light availability was two times higher than in the shelterwood understory (Dumais et al., 2025). The absence of an interaction between cutting treatments and climate analogues confirmed that there was no positive effect of the shelterwood cover on growth and survival rate for southern provenances. In fact, the foliage of seedlings produced in the open-grown tree nursery conditions could allow these to benefit from full light conditions, even if species are shade-tolerant (e.g., Dumais et al., 2019, 2020). These enhanced light conditions could profit our seedlings planted at high latitudes, where light is limited because of shorter growing seasons and lower solar angle (Lieffers et al., 1999; Messier et al., 1999). In our study, seedlings of all species planted in patch clearcuts improved their diameter growth, while seedlings of conifers and Prunus serotina also increased their height growth compared to the shelterwood. These growth results are consistent with higher gas exchange performance that we previously observed for Picea glauca, Thuja occidentalis and Prunus serotina in patch clearcuts (Dumais et al., 2025). The absence of significant gain in height growth for Quercus rubra, Acer saccharum and Carya ovata compared to the shelterwood can be partly explained by the late frost damage to the apical stem occurring during leaf flush in year 2 and 3 (Parent, 2022, unpublished data collected at this study site, Champagne et al., 2025). Even though the partial cover is not necessary to ensure survival of southern deciduous species, it can facilitate seedling acclimation during the first years (Paquette et al., 2006; Truax et al., 2018).

3.2. Implications for management

This study aimed to assess the climate analogue concept as seed sourcing method in an operational assisted migration field trial. Our first five-year results with high survival rates (84 %) tend to demonstrate that it is an appropriate approach. There were only slight differences in survival and growth among climate analogues, suggesting that we have options based on climate-based indices to guide us in seed sourcing. Although encouraging, these results are short-term and should be interpreted with caution, particularly because the seedlings were protected by a deep snow layer during their first winters, reducing their exposure to harsh microclimate conditions and cervid browsing. Up to now, assisted population expansion appears as a possibility to conserve local species in ecosystems, at least for boreal conifers growing at the southern part of their range (e.g., Picea and Thuja spp.). The option of introducing non-local species through mixtures with local species (Muller et al., 2019) also appears feasible, especially in case of assisted range expansion (e.g. Quercus rubra). Results can be more variable for assisted species migration (e.g. good performance of Prunus serotina vs poor for Carya ovata) and not all species appear equal candidates. Because factors other than translocation distance can be as important, such as the capacity to tolerate shade and competition, species with wide ecological amplitude are better candidates for assisted species migration (Muller et al., 2019; Clark et al., 2022).

We conducted this study in a context of silvical rehabilitation with the goal to enhance the resilience and adaptive capacity of mixedwood stands altered by past diameter-limit cutting. All species including the shade-tolerant ones grew better in open conditions of small patch clearcut with ground scarification, suggesting the use of this silvicultural scenario for assisted migration plantings. Where patch clearcut is not possible because of aesthetic or social acceptability, or because the stand structure is not appropriate for clearcuts, planting in harvest gaps through a selection or a shelterwood system would be sound (Muller et al., 2019; Clark et al., 2022). One-time brushcutting around the planted seedlings in the first five years resulted in limited growth increase. More frequent or longer-term brushcutting management could be necessary in the future (Dumais et al., 2025). Long term monitoring of these assisted migration plantings will be important to assess the capacity of seedlings to eventually develop as mature trees to provide wood products, seeds, and other ecosystem services.

CRediT authorship contribution statement

Alejandro A. Royo: Writing – review & editing, Methodology, Funding acquisition, Conceptualization. Jean-Pierre Tremblay: Writing – review & editing, Methodology. Alison D. Munson: Writing – original draft, Methodology, Funding acquisition. Catherine Périé: Writing – review & editing, Validation, Formal analysis. Christel C. Kern: Writing – review & editing, Methodology, Conceptualization. Daniel Dumais: Writing – review & editing, Methodology, Conceptualization. Emilie Champagne: Writing – review & editing, Writing – original draft, Visualization, Validation, Investigation, Formal analysis, Conceptualization. Patricia Raymond: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Funding sources

This work was funded by the ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (Plan pour une économie verte 2030, project no. 112959367 led by P. Raymond) and the ministère des Ressources naturelles et des Forêts du Québec (project no.112332136 conducted at the Direction de la recherche forestière and led by P. Raymond).

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Given her role as Associate Editor, Christel C. Kern had no involvement in the peer review of this article and had no access to information regarding its peer review. Full responsibility for the editorial process for this article was delegated to another journal editor. Other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank M. Kaye, L. Leites and S. Matthews for contributions towards the development of the ideas presented in the manuscript. Deployment of this work would not be possible without the technical and operational assistance on seed sourcing, nursery production, silvicultural implementation, and data collection provided by G. Adams, D. Allen, J. Arnold, A. Benoist-Chénier, F. Bouchard, L. Carignan-Guillemette, S. Carles, F. Colas, P-L. Déchêne, A. Déziel, P. Doyon, É. Duberger, Y. Gauvreau, M-J. Gilbert, J-L. Landreville, D. Lee, D. McPhee, F. Mireault-Pelchat, A. Piché, S. Potvin, S. Marcouiller, V. Roussel, É. Saulnier, A. Savary, R. Thouin, N. Touchette, G. Tremblay-Brassard, H. Tremblay, S. Williams, and numerous students over the years. We thank I. Auger, L. Charette and M.-C. Lambert for statistical advice, T. Logan (Ouranos) for the climate analogue modelling, J. Noel and V. Poirier for maps. We are grateful to B. Wessel and D. Bronson, as

well as two anonymous reviewers and the associate editor, for their helpful comments on early versions of this manuscript.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.foreco.2025.123179.

Data availability

Seedlings survival and growth data from an assisted migration trial in temperate mixedwood forest, Québec, Canada (DFDR)

References

- Adams, B.T., Royo, A.A., Kern, C.C., Bronson, D.R., Matthews, S.N., Gougherty, A.V., Prasad, A.M., Iverson, L.R., Rehm, E.M., Raymond, P., Périé, C., Miesel, J.R., McGraw, A.M., 2024. Identifying climatically-compatible seedlots for the eastern US: building the predictive tools and knowledge to enable forest assisted migration. Front. For. Glob. Change 7, 1449340. https://doi.org/10.3389/ffgc.2024.1449340.
- Aitken, S., Bemmels, J.B., 2016. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290.
- Alfaro, R.I., Fady, B., Vendramin, G.G., Dawson, I.K., Fleming, R.A., Sáenz-Romero, C., Lindig-Cisneros, R.A., Murdock, T., Vinceti, B., Navarro, C.M., Skrøppa, T., Baldinelli, G., El-Kassaby, Y.A., Loo, J., 2014. The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For. Ecol. Manag, 333, 76–87.
- Altman, J., Fibich, P., Trotsiuk, V., Altmanova, N., 2024. Global pattern of forest disturbances and its shift under climate change. Sci. Total Environ. 915, 170117. https://doi.org/10.1016/j.scitotenv.2024.170117.
- Aquilué, N., Messier, C., Martins, K.T., Dumais-Lalonde, V., Mina, M., 2021. A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. For. Ecol. Manag. 481, 118692. https://doi.org/10.1016/j.foreco.2020.118692.
- Aubin, I., Garbe, C.M., Colombo, S., Drever, C.R., McKenney, D.W., Messier, C., Pedlar, J., Saner, M.A., Venier, L., Wellstead, A.M., Winder, R., Witten, E., Ste-Marie, C., 2011. Why we disagree about assisted migration: ethical implications of a key debate regarding the future of Canada's forests. For. Chron. 87, 755–765.
- Berner, L.T., Goetz, S.J., 2022. Satellite observations document trends consistent with a boreal forest biome shift. Glob. Change Biol. 28 (10), 3275–3292. https://doi.org/ 10.1111/gcb.16121.
- Boisvert-Marsh, L., Périé, C., de Blois, S., 2019. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J. Ecol. 107 (4), 1956–1969. https://doi.org/10.1111/1365-2745.13149.
- Chakraborty, D., Ciccu, A., Ballian, D., Benito Garzón, M., Bolte, A., Bozic, G., Buchacher, R., Čepl, J., Cremer, E., Ducousso, A., Gaviria, J., George, J.P., Hardtke, A., Ivankovic, M., Klisz, M., Kowalczyk, J., Kremer, A., Lstibûrek, M., Longauer, R., Mihai, G., Nagy, L., Petkova, K., Popov, E., Schirmer, R., Skrøppa, T., Mørtvedt Solvin, T., Steffenrem, A., Stejskal, J., Stojnic, S., Volmer, K., Schueler, S., 2024. Assisted tree migration can preserve the european forest carbon sink under climate change. Nat. Clim. Change 1–8. https://doi.org/10.1038/s41558-024-02080-5
- Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L., Schueler, S., 2021. Provisioning forest and conservation science with high-resolution maps of potential distribution of major european tree species under climate change. Ann. For. Sci. 78, 1–18.
- Champagne, E., Raymond, P., Royo, A.A., Speed, J.D., Tremblay, J.-P., Côté, S.D., 2021a. A review of ungulate impacts on the success of climate-adapted forest management strategies. Curr. For. Rep. 7 (4), 305–320. https://doi.org/10.1007/s40725-021-00148-5
- Champagne, E., Royo, A.A., Tremblay, J.-P., Raymond, P., 2021b. Tree assisted migration in a browsed landscape: can we predict susceptibility to herbivores? For. Ecol. Manag. 498, 119576. https://doi.org/10.1016/j.foreco.2021.119576.
- Champagne, E., Picher, G., Dumais, D., Raymond, P., 2025. Will it survive? Evaluating the effects of damage on tree seedling survival using multi-state models. Ecol. Appl.
- Clark, P.W., D'Amato, A.W., Evans, K.S., Schaberg, P.G., Woodall, C.W., 2022. Ecological memory and regional context influence performance of adaptation plantings in northeastern US temperate forests. J. Appl. Ecol. 59 (1), 314–329. https://doi.org/ 10.1111/1365-2664.14056.
- Clark, P.W., D'Amato, A.W., Palik, B.J., Woodall, C.W., Dubuque, P.A., Edge, G.J., Hartman, J.P., Fitts, L.A., Janowiak, M.K., Harris, L.B., Montgomery, R.A., Reinikainen, M.R., Zimmerman, C.L., 2023. A lack of ecological diversity in forest nurseries limits the achievement of tree-planting objectives in response to global change. BioScience 73 (8), 575–586. https://doi.org/10.1093/biosci/biad049.
- Dumais, D., Larouche, C., Raymond, P., Bédard, S., Lambert, M.C., 2019. Survival and growth dynamics of red spruce seedlings planted under different forest cover densities and types. New 50, 573–592. https://doi.org/10.1007/s11056-018-9680-2
- Dumais, D., Raymond, P., Champagne, E., 2025. Translocated Southern seedlings perform as well as local provenances: insights from an ecophysiological monitoring

- under varying cutting modalities. New 56, 20. https://doi.org/10.1007/s11056-024-
- Dumais, D., Raymond, P., Prévost, M., 2020. Eight-year ecophysiology and growth dynamics of *Picea rubens* seedlings planted in harvest gaps of partially cut stands. For. Ecol. Manag. 478, 118514. https://doi.org/10.1016/j.foreco.2020.118514.
- Dumont, A., Ouellet, J.-P., Crête, M., Huot, J., 2005. Winter foraging strategy of White-tailed deer at the Northern limit of its range. Ecoscience 12, 476–484. https://doi.org/10.2980/i1195-6860-12-4-476.1.
- Dumroese, R.K., Williams, M.I., Stanturf St., J.A., Clair, J.B., 2015. Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New For. 46, 947–964.
- Environment Canada. 2019. Canadian Climate Normals 1981-2010 Station Data Lac aux Sables. https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.ht ml?stnID=5203&autofwd=1 (accessed 30 May 2025).
- Etterson, J.R., Cornett, M.W., White, M.A., Kavajecz, L.C., 2020. Assisted migration across fixed seed zones detects adaptation lags in two major north American tree species. Ecol. Appl. 30 (5), e02092. https://doi.org/10.1002/eap.2092.
- Felton, A., Nilsson, U., Sonesson, J., Felton, A.M., Roberge, J.-M., Ranius, T., Ahlström, M., Bergh, J., Björkman, C., Boberg, J., Drössler, L., Fahlvik, N., Gong, P., Holmström, E., Keskitalo, E.C.H., Klapwijk, M.J., Laudon, H., Lundmark, T., Niklasson, M., Nordin, A., Pettersson, M., Stenlid, J., Sténs, A., Wallertz, K., 2016. Replacing monocultures with mixed-species stands: ecosystem service implications of two production forest alternatives in Sweden. Ambio 45, 124–139. https://doi. org/10.1007/s13280-015-0749-2.
- Findlater, K., Kozak, R., Hagerman, S., 2022. Difficult Climate-Adaptive decisions in forests as complex Social–Ecological systems. e2108326119 Proc. Nat. Acad. Sci. 119 (4). https://doi.org/10.1073/pnas.2108326119.
- Frelich, L.E., Peterson, R.O., Dovciak, M., Reich, P.B., Vucetich, J.A., Eisenhauer, N., 2012. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. Philos. Trans. R. Soc. B 367, 2955–2961. https://doi.org/10.1098/rstb.2012.0235.
- Gougherty, A.V., Prasad, A.M., Peters, M.P., Matthews, S.N., Adams, B.T., 2024. Climate change and the emergence of No-Analog forest assemblages in North America. Glob. Change Biol. 30 (12), e17605. https://doi.org/10.1111/gcb.17605.
- Graney, D.L., 1990. Carya ovata (Mill.) K. Koch. Silv. North Am. 2. (https://www.srs.fs. usda.gov/pubs/misc/ag 654/volume 2/carya/ovata.htm).
- Grenier, P., Parent, A.C., Huard, D., Anctil, F., Chaumont, D., 2013. An assessment of six dissimilarity metrics for climate analogs. J. Appl. Meteorol. Clim. 52, 733–752 doi: 10.1175/JAMC-D-12-0170.1.
- Guignabert, A., Jonard, M., Messier, C., André, F., de Coligny, F., Doyon, F., Ponette, Q., 2024. Adaptive forest management improves stand-level resilience of temperate forests under multiple stressors. Sci. Total Environ. 948, 174168. https://doi.org/ 10.1016/j.scitotenv.2024.174168.
- Hartmann, H., Bastos, A., Das, A.J., Esquivel-Muelbert, A., Hammond, W.M., Martínez-Vilalta, J., McDowell, N.G., Powers, J.S., Pugh, T.A.M., Ruthro, K.X., Allen, C.D., 2022. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Ann. Rev. Plant Biol. 73, 673–702. https://doi.org/10.1146/annurev-arplant-102820-012804.
- Jönsson, A.M., Linderson, M.L., Stjernquista, I., Schlyterc, P., Bärring, L., 2004. Climate change and the effect of temperature backlashes causing frost damage in *Picea abies*. Glob. Planet. Change 44, 195–207.
- Kenefic, L.S., Bataineh, M., Wilson, J.S., Brissette, J.C., Nyland, R.D., 2014. Silvicultural rehabilitation of cutover mixedwood stands. J. For. 112, 261–271. https://doi.org/ 10.5849/jof.13-033.
- Kollas, C., Korner, C., Randin, C.F., 2014. Spring frost and growing season length cocontrol the cold range limits of broad-leaved trees. J. Biogeogr. 41, 773–783.
- Kreyling, J., Schmid, S., Aas, G., 2015. Cold tolerance of tree species is related to the climate of their native ranges. J. Biogeogr. 42, 156–166.
- Lafleur, B., Paré, D., Munson, A.D., Bergeron, Y., 2010. Response of northeastern north American forests to climate change: will soil conditions constrain tree species migration? Environ. Rev. 18, 279–289. https://doi.org/10.1139/A10-013.
- Lebel, F., De Bellefeuille, S. 2021. Plan de gestion du cerf de Virginie au Québec 2020-2027. Min. For. Faune Parcs, Québec, 50 p. (https://cdn-contenu.quebec.ca/cdn-contenu/faune/documents/gestion-especes/Plans-gestion/plan-gestion-cerf-virginie. pdf) (Accessed 30 May 2025).
- Lefort, S., Massé, S. 2015. Plan de gestion de l'orignal au Québec 2012-2019. Min. For. Faune Parcs. 443 p. (https://cdn-contenu.quebec.ca/cdn-contenu/faune/documents/gestion-especes/Plans-gestion/plan-gestion-orignal.pdf) (Accessed 30 May 2025).
- Leites, L., Benito Garzón, M., 2023. Forest tree species adaptation to climate across biomes: building on the legacy of ecological genetics to anticipate responses to climate change. Glob. Change Biol. 29 (17), 4711–4730. https://doi.org/10.1111/ scb.16711
- Leites, L.P., Rehfeldt, G.E., Steiner, K.C., 2019. Adaptation to climate in five eastern North America broadleaf deciduous species: Growth clines and evidence of the growth-cold tolerance trade-off. Persp. Plant Ecol. Evol. Syst. 37, 64–72. https://doi. org/10.1016/j.ppees.2019.02.002.
- Lieffers, V.J., Messier, C., Stadt, K.J., Gendron, F., Comeau, P.G., 1999. Predicting and managing light in the understory of boreal forests. Can. J. For. Res 29 (6), 796–811. https://doi.org/10.1139/x98-165.
- McKenney, D.W., Mackey, B.G., Joyce, D., 1999. Seedwhere: a computer tool to support seed transfer and ecological restoration decisions. Environ. Modell. Softw. 14 (6), 589–595. https://doi.org/10.1016/S1364-8152(98)00095-4.
- Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Nolet, P., Aquilué, N., Fortin, M.-J., Puettmann, K., 2019. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6 (21), 2019. https://doi.org/10.1186/s40663-019-0166-2.

- Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide, H., Caldwell, B., Cavender-Bares, J., Dhiedt, E., Eisenhauer, N., Ganade, G., Gravel, D., Guillemot, J., Hall, J.S., Hector, A., Hérault, B., Jactel, H., Koricheva, J., Kreft, H., Mereu, S., Muys, B., Nock, C.A., Paquette, A., Parker, J.D., Perring, M.P., Ponette, Q., Potvin, C., Reich, P.B., Scherer-Lorenzen, M., Schnabel, F., Verheyen, K., Weih, M., Wollni, M., Zemp, D.C., 2021. For the sake of resilience and multifunctionality, let's diversify planted forests! Cons. Lett. 15 (1), e12829. https://doi.org/10.1111/conl.12829.
- Messier, C., Doucet, R., Ruel, J.-C., Claveau, Y., Kelly, C., Lechowicz, M.J., 1999.
 Functional ecology of advance regeneration in relation to light in boreal forests. Can.
 J. For. Res 29 (6), 812–823. https://doi.org/10.1139/x99-070.
- Millar, C.I., Stephenson, N.L., Stephens, S.L., 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151.
- Muller, J.J., Nagel, L.M., Palik, B.J., 2019. Forest adaptation strategies aimed at climate change: assessing the performance of future climate-adapted tree species in a Northern minnesota pine ecosystem. For. Ecol. Manag. 451, 117539. https://doi. org/10.1016/j.foreco.2019.117539.
- Mura, C., Buttò, V., Silvestro, R., Deslauriers, A., Charrier, G., Raymond, P., Rossi, S., 2022. The early bud gets the cold: diverging spring phenology drives exposure to late frost in a *Picea mariana* [(Mill.) BSP] common garden. Phys. Plant 174 (6), e13798. https://doi.org/10.1111/ppl.13798.
- Mura, C., Charrier, G., Butto, V., Delagrange, S., Surget-Groba, Y., Raymond, P., Rossi, S., Deslauriers, A., 2025. Local conditions have greater influence than provenance on sugar maple (*Acer saccharum* Marsh.) frost hardiness at its Northern range limit. Tree Phys. 45 (1), tpae167. https://doi.org/10.1093/treephys/tpae167.
- Nagel, L.M., Palik, B.J., Battaglia, M.A., D'Amato, A.W., Guldin, J.M., Swanston, C.W., Janowiak, M.K., Powers, M.P., Joyce, L.A., Millar, C.I., Peterson, D.L., Ganio, L.M., Kirschbaum, C., Roske, M.R., 2017. Adaptive silviculture for climate change: a national experiment in manager-scientist partnerships to apply an adaptation framework. J. For. 115 (3), 167–178.
- O'Neill, G.A., Gómez-Pineda, E., 2021. Local was best: sourcing tree seed for future climates. Can. J. For. Res. 51 (10), 1432–1439. https://doi.org/10.1139/cjfr-2020-0408
- Palik, B.J., Clark, P.W., D'Amato, A.W., Swanston, C., Nagel, L., 2022. Operationalizing forest-assisted migration in the context of climate change adaptation: examples from the eastern USA. Ecosphere 13 (10), e4260. https://doi.org/10.1002/ecs2.4260.
- Paquette, A., Bouchard, A., Cogliastro, A., 2006. Successful under-planting of red oak and black cherry in early-successional deciduous shelterwoods of North America. Ann. For. Sci. 63, 823–831. https://doi.org/10.1051/forest:2006065.
- Parent, A.-J., 2022. L'effet des plantes environnantes sur le risque de gel tardif de semis de chêne rouge. Mémoire de fin d'études. fac. For. géogr. Géom., U. Laval Québec OC. p. 31.
- Park, A., Talbot, C., 2018. Information underload: ecological complexity, incomplete knowledge, and data deficits create challenges for the assisted migration of forest trees. BioScience 68 (4), 251–263.
- Pedlar, J.H., McKenney, D.W., Lu, P., 2021. Critical seed transfer distances for selected tree species in eastern North America. J. Ecol. 109 (6), 2271–2283. https://doi.org/ 10.1111/1365-2745.13605
- Pedlar, J.H., McKenney, D.W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., O'Neill, G.A., Winder, R.S., Ste-Marie, C., 2012. Placing forestry in the assisted migration debate. BioScience 62 (9), 835–842. https://doi.org/10.1525/ bio.2012.62.9.10.
- Périé, C., de Blois, S., Lambert, M.-C., Casajus, N., 2014. Effets anticipés des changements climatiques sur l'habitat des espèces arborescentes au Québec, 173. MRN DRF Mém. Rech., p. 46
- Pike, C.C., Haase, D.L. 2024. Seed-transfer Guidelines for the Important Tree Species in the Eastern United States. USDA For. Serv. Agric. Hand. 801. https://www.fs.usda. gov/sites/default/files/fs_media/fs_document/seed-transfer-guidelines.pdf (accesses May 30).

- Pike, C., Potter, K.M., Berrang, P., Crane, B., Baggs, J., Leites, L., Luther, T., 2020. New seed-collection zones for the eastern United States: the eastern seed zone forum. J. For. 118 (4), 444–451.
- Potvin, F., 1995. L'inventaire du brout: revue des méthodes et description de deux techniques. Ministère de l'environnement et de la faune. Québec. Qc 70.
- Prasad, A., Peters, M., Pedlar, J., Gougherty, A., McKenney, D., Mora, F., Matthews, S., McNulty, S., López-Mata, L., 2024. Habitat and migration dynamics of north American tree species under climate change. J. Biogeogr. 2025 (0), e15138. https://doi.org/10.1111/jbi.15138.
- Raymond, P., Power, H., Guillemette, F., DeBlois, J., Dumais, D., 2024. Resilience of uneven-aged mixedwood stands altered by diameter-limit cutting and opportunities for their rehabilitation. For. Chron. 100 (2), 1–12. https://doi.org/10.5558/tfc2024-023
- Raymond, P., Prévost, M., Roy, V., 2020. Silvicultural options for rehabilitating high-graded mixedwood stands in northeastern North America. For. Ecol. Manag. 466, 118137. https://doi.org/10.1016/j.foreco.2020.118137.
- Reich, P.B., Sendall, K.M., Rice, K., Rich, R.L., Stefanski, A., Hobbie, S.E., Montgomery, R.A., 2015. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Change, 10.1038/ nclimate2497. 5 p.
- Royo, A.A., Raymond, P., Kern, C.C., Adams, B.T., Bronson, D., Champagne, E., Dumais, D., Gustafson, E., Marquardt, P.E., McGraw, A.M., Miesel, J.R., Munson, A. D., Périé, C., Tavares Moreira, F.J., Ola, A., Bouchard, M., Bissonnette, J.-F., 2023. Desired REgeneration through assisted migration (DREAM): implementing a research framework for climate-adaptive silviculture. For. ecol. For. Ecol. Manag. 546, 121298. https://doi.org/10.1016/j.foreco.2023.121298.
- Saucier J.-P., Grondin P., Robitaille A., Gosselin J., Morneau C., Richard P.J.H., Brisson J., Sirois L., Leduc A., Morin H., Thiffault É., Gauthier S., Lavoie C., Payette S. 2009. Chapitre 4 Écologie forestière. In: Ordre des ingénieurs forestiers du Québec (ed.), Manuel de foresterie, 2nd ed. Éditions MultiMondes. Montréal, QC, pp. 165–315.
- Soil Classification Working Group. 1998. The Canadian System of Soil Classification, 3rd ed., Agriculture and Agri-Food Canada, Ottawa.
- Solarik, K.A., Messier, C., Ouimet, R., Bergeron, Y., Gravel, D., 2018. Local adaptation of trees at the range margins impacts range shifts in the face of climate change. Glob. Ecol. Biogeogr. 27 (12), 1507–1519. https://doi.org/10.1111/geb.12829.
- Stanke, H., Finley, A.O., Domke, G.M., Weed, A.S., MacFarlane, D.W., 2021. Over half of Western United States' most abundant tree species in decline. Nat. Comm. 12 (1), 451. https://doi.org/10.1038/s41467-020-20678-z.
- Truax, B., Gagnon, D., Fortier, J., Lambert, F., Pétrin, M.A., 2018. Ecological factors affecting White pine, red oak, bitternut hickory and black walnut underplanting success in a Northern temperate post-agricultural forest. Forests 9 (8), 499. https://doi.org/10.3390/f9080499.
- Urgoiti, J., Messier, C., Keeton, W.S., Reich, P.B., Gravel, D., Paquette, A., 2022. No complementarity no gain—Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol. Lett. 25 (4), 851–862. https://doi.org/10.1111/ele.13959.
- Vitt, P., Havens, K., Kramer, A.T., Sollenberger, D., Yates, E., 2010. Assisted migration of plants: changes in latitudes, changes in attitudes. Biol. Cons. 143, 18–27.
- Walker, X.J., Hart, S., Hansen, W.D., Jean, M., Brown, C.D., Chapin III, F.S., Hewitt, R., Hollingsworth, T.N., Mack, M.C., Johnstone, J.F., 2024. Factors limiting the potential range expansion of lodgepole pine in interior Alaska. Ecol. Appl. 34 (5), e2983. https://doi.org/10.1002/eap.2983.
- Warner, E., Cook-Patton, S.C., Lewis, O.T., Brown, N., Koricheva, J., Eisenhauer, N., Ferlian, O., Gravel, D., Hall, J.S., Jactel, H., Mayora, C., Meredieu, C., Messier, C., Paquette, A., Parker, W.C., Potvin, C., Reich, P.B., Hector, A., 2023. Young mixed planted forests store more carbon than monocultures—a meta-analysis. Front. For. Glob. Change 6, 1226514. https://doi.org/10.3389/ffgc.2023.1226514.
 Wotherspoon, A.R., Achim, A., Coops, N.C., 2023. Assessing future climate trends and
- Wotherspoon, A.R., Achim, A., Coops, N.C., 2023. Assessing future climate trends and implications for managed forests across Canadian ecozones. Can. J. For. Res. 54 (3), 278–289. https://doi.org/10.1139/cjfr-2023-0058.